Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.885
Filtrar
1.
Sci Total Environ ; 927: 172308, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599396

RESUMO

Despite the diverse research into the environmental impact of plastics, several stones have yet to be unraveled in terms of their ecotoxicological potential. Moreover, their detrimental impacts have become terrifying in recent years as the understanding of their tendency to associate and form cohorts with other emerging contaminants grew. Despite the hypothesis that microplastics may potentially adsorb organic pollutants, sequestering and making them not bioavailable for enhanced toxicity, evidence with pollutants such as Tetrabromobisphenol A (TBBPA) defers this assertion. TBBPA, one of the most widely used brominated flame retardants, has been enlisted as an emerging contaminant of serious environmental and human health concerns. Being also an additive to plasticware, it is not far to suspect that TBBPA could be found in association with micro/nanoplastics in our environment. Several pieces of evidence from recent studies have confirmed the micro/nanoplastics-TBBPA association and have exposed their compounded detrimental impacts on the environment and human health. This study, therefore, presents a comprehensive and up-to-date review of recent findings regarding their occurrence, factors that foster their association, including their sorption kinetics and isotherms, and their impacts on aquatic/agroecosystem and human health. The way forward and prospects for future studies were presented. This research is believed to be of significant interest to the readership due to its relevance to current environmental challenges posed by plastics and TBBPA. The study not only contributes valuable insights into the specific interaction between micro/nanoplastics and TBBPA but also suggests the way forward and prospects for future studies in this field.


Assuntos
Ecotoxicologia , Retardadores de Chama , Plásticos , Bifenil Polibromatos , Humanos , Microplásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Poluentes Ambientais
2.
Sci Total Environ ; 927: 172199, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580108

RESUMO

Effect-directed analysis (EDA) is a crucial tool in environmental toxicology, effectively integrating toxicity testing with chemical analysis. The conventional EDA approach, however, presents challenges such as significant solvent consumption, extended analysis time, labor intensity, and potential contamination risks. In response, we introduce an innovative alternative to the conventional EDA. This method utilizes the MTT bioassay and online two-dimensional liquid chromatography (2D LC) coupled with high-resolution mass spectrometry (HR-MS), significantly reducing the fractionation steps and leveraging the enhanced sensitivity of the bioassay and automated chemical analysis. In the chemical analysis phase, a switching valve interface is employed for comprehensive analysis. We tested the performance of both the conventional and our online 2D LC-based methods using a household product. Both methods identified the same number of toxicants in the sample. Our alternative EDA is 22.5 times faster than the conventional method, fully automated, and substantially reduces solvent consumption. This novel approach offers ease, cost-effectiveness, and represents a paradigm shift in EDA methodologies. By integrating a sensitive bioassay with online 2D LC, it not only enhances efficiency but also addresses the challenges associated with traditional methods, marking a significant advancement in environmental toxicology research.


Assuntos
Poluentes Ambientais , Cromatografia Líquida/métodos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Testes de Toxicidade/métodos , Monitoramento Ambiental/métodos , Espectrometria de Massas/métodos , Bioensaio/métodos , Ecotoxicologia/métodos
3.
Environ Int ; 186: 108607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593686

RESUMO

Practical, legal, and ethical reasons necessitate the development of methods to replace animal experiments. Computational techniques to acquire information that traditionally relied on animal testing are considered a crucial pillar among these so-called new approach methodologies. In this light, we recently introduced the Bio-QSAR concept for multispecies aquatic toxicity regression tasks. These machine learning models, trained on both chemical and biological information, are capable of both cross-chemical and cross-species predictions. Here, we significantly extend these models' applicability. This was realized by increasing the quantity of training data by a factor of approximately 20, accomplished by considering both additional chemicals and aquatic organisms. Additionally, variable test durations and associated random effects were accommodated by employing a machine learning algorithm that combines tree-boosting with mixed-effects modeling (i.e., Gaussian Process Boosting). We also explored various biological descriptors including Dynamic Energy Budget model parameters, taxonomic distances, as well as genus-specific traits and investigated the inclusion of mode-of-action information. Through these efforts, we developed Bio-QSARs for fish and aquatic invertebrates with exceptional predictive power (R squared of up to 0.92 on independent test sets). Moreover, we made considerable strides to make models applicable for a range of use cases in environmental risk assessment as well as research and development of chemicals. Models were made fully explainable by implementing an algorithmic multicollinearity correction combined with SHapley Additive exPlanations. Furthermore, we devised novel approaches for applicability domain construction that take feature importance into account. We are hence confident these models, which are available via open access, will make a significant contribution towards the implementation of new approach methodologies and ultimately have the potential to support "Green Chemistry" and "Green Toxicology".


Assuntos
Peixes , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Animais , Organismos Aquáticos/efeitos dos fármacos , Invertebrados/efeitos dos fármacos , Ecotoxicologia/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Algoritmos
4.
BMC Plant Biol ; 24(1): 300, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637728

RESUMO

Cigarette butts (CBs) have become the most ubiquitous form of anthropogenic litter globally. CBs contain various hazardous chemicals that persist in the environment for longer period. These substances are susceptible to leaching into the environment through waterways. The recent study was aimed to evaluate the effects of disposed CBs on the growth and development of Azolla pinnata, an aquatic plant. It was found that after a span of 6 days, the root length, surface area, number of fronds, and photosynthetic efficacy of plant were considerably diminished on the exposure of CBs (concentrations 0 to 40). The exposure of CBs led to a decrease in the FM, FV/F0, and φP0, in contrast, the φD0 increased in response to CBs concentration. Moreover, ABS/CSm, TR0/CSm, and ET0/CSm displayed a negative correlation with CB-induced chemical stress. The performance indices were also decreased (p-value ≤ 0.05) at the highest concentration of CBs. LD50 and LD90 represent the lethal dose, obtained value for LD50 is 20.30 CBs and LD90 is 35.26 CBs through probit analysis. Our results demonstrate that the CBs cause irreversible damage of photosynthetic machinery in plants and also reflect the efficacy of chlorophyll a fluorescence analysis and JIP test for assessing the toxicity of CBs in plants.


Assuntos
Fotossíntese , Produtos do Tabaco , Clorofila A , Fotossíntese/fisiologia , Ecotoxicologia
5.
Biochem Biophys Res Commun ; 709: 149827, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38554600

RESUMO

This study explored the uptake of lead in the epigeic earthworm Dendrobaena veneta exposed to 0, 1000, and 2500 µg Pb/g soil. The soil metal content was extracted using strong acid digestion and water leaching, and analysed by means of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to estimate absolute and bioavailable concentrations of metals in the soil. The guts and heads of lead-exposed earthworms were processed into formalin-fixed and paraffin embedded sections for high-resolution multi-element metallomic imaging via Laser Ablation ICP-MS (LA-ICP-MS). Metallomic maps of phosphorus, zinc, and lead were produced at 15-µm resolution in the head and gut of D. veneta. Additional 4-µm resolution metallomic maps of the earthworm brains were taken, revealing the detailed localisation of metals in the brain. The Pb bioaccumulated in the chloragogenous tissues of the earthworm in a dose-dependent manner, making it possible to track the extent of soil contamination. The bioaccumulation of P and Zn in earthworm tissues was independent of Pb exposure concentration. This approach demonstrates the utility of LA-ICP-MS as a powerful approach for ecotoxicology and environmental risk assessments.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Ecotoxicologia , Chumbo/toxicidade , Chumbo/análise , Metais Pesados/toxicidade , Encéfalo , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
6.
Sci Total Environ ; 926: 171944, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527542

RESUMO

Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.


Assuntos
Antibacterianos , Ecossistema , Humanos , Antibacterianos/análise , Fluoroquinolonas/análise , Ecotoxicologia , Solo/química
7.
Environ Pollut ; 348: 123854, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527586

RESUMO

Microplastic (MP) pollution is becoming an emerging environmental concern across aquatic and terrestrial ecosystems. Plastic mulching and the use of pesticides in agriculture can lead to microplastics and agrochemicals in soil, which can result in unintended exposure to non-target organisms. The combined toxicity of multiple stressors represents a significant paradigm shift within the field of ecotoxicology, and its exploration within terrestrial ecosystems involving microplastics is still relatively limited. The present study investigated the combined effects of polyethylene MP (PE-MP) and the agrochemical carbendazim (CBZ) on the earthworm Eisenia fetida at different biological levels of organization. While E. fetida survival and reproduction did not exhibit significant effects following PE-MP treatment, there was a reduction in cocoon and hatchling numbers. Notably, prolonged exposure revealed delayed toxicity, leading to substantial growth impairment. Exposure to CBZ led to significant alterations in the endpoints mentioned above. While there was a decrease in cocoon and hatchling numbers, the combined treatment did not yield significant effects on earthworm reproduction except at higher concentrations. However, lower concentrations of PE-MP alongside CBZ induced a noteworthy decline in biomass content, signifying a form of potentiation interaction. In addition, concurrent exposure led to synergistic effects, from oxidative stress to modifications in vital organs such as the body wall, intestines, and reproductive structures (spermathecae, seminal vesicles, and ovarian follicles). The comparison of multiple endpoints revealed that seminal vesicles and ovarian follicles were the primary targets during the combined exposure. The research findings suggest that there are variable and complex responses to microplastic toxicity in terrestrial ecosystems, especially when combined with other chemical stressors like agrochemicals. Despite these difficulties, the study implies that microplastics can alter earthworms' responses to agrochemical exposure, posing potential ecotoxicological risks to soil fauna.


Assuntos
Benzimidazóis , Carbamatos , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Feminino , Masculino , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno/toxicidade , Ecotoxicologia , Ecossistema , Poluentes do Solo/análise , Solo/química , Praguicidas/farmacologia
8.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479782

RESUMO

Alternative farming systems have developed since the beginning of industrial agriculture. Organic, biodynamic, conservation farming, agroecology and permaculture, all share a grounding in ecological concepts and a belief that farmers should work with nature rather than damage it. As ecology-based agricultures rely greatly on soil organisms to perform the functions necessary for agricultural production, it is thus important to evaluate the performance of these systems through the lens of soil organisms, especially soil microbes. They provide numerous services to plants, including growth promotion, nutrient supply, tolerance to environmental stresses and protection against pathogens. An overwhelming majority of studies confirm that ecology-based agricultures are beneficial for soil microorganisms. However, three practices were identified as posing potential ecotoxicological risks: the recycling of organic waste products, plastic mulching, and pest and disease management with biopesticides. The first two because they can be a source of contaminants; the third because of potential impacts on non-target microorganisms. Consequently, developing strategies to allow a safe recycling of the increasingly growing organic matter stocks produced in cities and factories, and the assessment of the ecotoxicological impact of biopesticides on non-target soil microorganisms, represent two challenges that ecology-based agricultural systems will have to face in the future.


Assuntos
Ecotoxicologia , Solo , Microbiologia do Solo , Agentes de Controle Biológico , Agricultura
9.
Environ Monit Assess ; 196(4): 391, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517570

RESUMO

Although bats are responsible for many ecosystem services on which humans depend, they are frequently exposed to multiple anthropogenic stressors. Heavy metal (HM) exposure is an emerging threat of great significance to bats, yet the toxicity threshold for most metallic elements remains unknown. The greatest diversity of bats worldwide is in the Neotropical region, where ecotoxicological studies are scarce. Thus, this review provides a current overview of the knowledge available on HMs contamination of Neotropical bats. Analysis of the results of 17 articles published between 2000 and 2023 documented a trend of increasing interest in the topic, although it is incipient and in few countries. Of the 226 species known for the Neotropics, 95 have been investigated for metal concentrations. Seven different matrices were used to assess concentrations of heavy metals in tissues, with fur being the subject of eight studies, highlighting the search for non-invasive analysis. Twenty-one HMs were detected in bats, with mercury being the most common. The highest concentrations of this HM were detected in insectivorous/omnivorous bats, highlighting its magnification in this trophic guild compared to frugivorous bats. Copper, lead, and cadmium did not differ significantly among the other trophic guilds. This review shows that there is knowledge about concentrations of heavy metals in several Neotropical species, but knowledge about the impact of these concentrations on bat health is limited, which highlights the need for research to determine critical concentrations that cause damage to bat health, and that guide conservation actions for their populations, as well as environmental monitoring actions for these pollutants.


Assuntos
Quirópteros , Metais Pesados , Animais , Humanos , Monitoramento Ambiental , Ecossistema , Ecotoxicologia , Metais Pesados/toxicidade
10.
J Environ Sci Health B ; 59(4): 170-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425027

RESUMO

For the European risk assessment (RA) for soil organisms exposed to plant protection products (PPPs) endpoints from ecotoxicological laboratory studies are compared with predicted environmental concentrations in soil (PECSOIL) at first tier. A safety margin must be met; otherwise, a higher tier RA is triggered (usually soil organism field studies). A new tiered exposure modeling guidance was published by EFSA to determine PECSOIL. This work investigates its potential impact on future soil RA. PECSOIL values for >50 active substances and metabolites were calculated and compared with the respective endpoints for soil organisms to calculate the RA failure rate. Compared to the current (FOCUS) exposure modeling, PECSOIL values for all EU regulatory zones considerably increased, e.g., resulting in active substance RA failure rates of 67%, 58% and 36% for modeling Tier-1, Tier-2 and Tier-3A, respectively. The main driving factors for elevated PECSOIL were soil bulk density, crop interception and wash-off, next to obligatory modeling and scenario adjustment factors. Spatial PECSOIL scenario selection procedures result in agronomically atypical soil characteristics (e.g., soil bulk density values in Tier-3A scenarios far below typical European agricultural areas). Consequently, exposure modeling and ecotoxicological study characteristics are inconsistent, which hinders scientifically reasonable comparison of both in the RA.


Assuntos
Monitoramento Ambiental , Solo , Monitoramento Ambiental/métodos , Agricultura , Ecotoxicologia , Medição de Risco/métodos
11.
Sci Total Environ ; 927: 171804, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513865

RESUMO

Waste disposal in landfills remains a global concern. Despite technological developments, landfill leachate poses a hazard to ecosystems and human health since it acts as a secondary reservoir for legacy and emerging pollutants. This study provides a systematic and scientometric review of the nature and toxicity of pollutants generated by landfills and means of assessing their potential risks. Regarding human health, unregulated waste disposal and pathogens in leachate are the leading causes of diseases reported in local populations. Both in vitro and in vivo approaches have been employed in the ecotoxicological risk assessment of landfill leachate, with model organisms ranging from bacteria to birds. These studies demonstrate a wide range of toxic effects that reflect the complex composition of leachate and geographical variations in climate, resource availability and management practices. Based on bioassay (and other) evidence, categories of persistent chemicals of most concern include brominated flame retardants, per- and polyfluorinated chemicals, pharmaceuticals and alkyl phenol ethoxylates. However, the emerging and more general literature on microplastic toxicity suggests that these particles might also be problematic in leachate. Various mitigation strategies have been identified, with most focussing on improving landfill design or leachate treatment, developing alternative disposal methods and reducing waste volume through recycling or using more sustainable materials. The success of these efforts will rely on policies and practices and their enforcement, which is seen as a particular challenge in developing nations and at the international (and transboundary) level. Artificial intelligence and machine learning afford a wide range of options for evaluating and reducing the risks associated with leachates and gaseous emissions from landfills, and various approaches tested or having potential are discussed. However, addressing the limitations in data collection, model accuracy, real-time monitoring and our understanding of environmental impacts will be critical for realising this potential.


Assuntos
Inteligência Artificial , Ecotoxicologia , Instalações de Eliminação de Resíduos , Medição de Risco , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Eliminação de Resíduos/métodos , Política Ambiental , Humanos
12.
Environ Sci Pollut Res Int ; 31(11): 16725-16734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326678

RESUMO

Eisenia andrei is considered in OECD and ISO guidelines to be a suitable replacement for Eisenia fetida in ecotoxicological assays. This suggests that other alternative materials and methods could also be used in standard procedures for toxicity testing. The guidelines also favor using less time-consuming procedures and reducing costs and other limitations to ecotoxicological assessments. In recent years, spent coffee grounds (SCG) have been used to produce vermicompost and biochar and as an additive to organic fertilizers. In addition, the physicochemical characteristics of SCG indicate that the material is a suitable substrate for earthworms, with the organisms performing as well as in natural soil. In the present study, a battery of ecotoxicological tests was established with unwashed and washed SCG and a natural reference soil (LUFA 2.2). The test substrates were spiked with different concentrations of silver nitrate. Survival and reproduction of the earthworm E. andrei were assessed under different conditions, along with substrate basal respiration (SBR) as a proxy for microbial activity. Seedling emergence and the germination index of Lepidium sativum were also determined, following standard guidelines. Exposure to silver nitrate had similar effects on earthworm survival and reproduction, as the estimated effective concentrations (EC10 and EC50) in unwashed SCG and LUFA 2.2 overlapped. A hormetic effect was observed for SBR in LUFA 2.2 spiked with 12.8 mg/kg but not in unwashed SCG. Both SBR and root development were inhibited by similar concentrations of silver nitrate in washed SCG. The findings indicate that unwashed SCG could potentially be used as a substrate in E. andrei toxicity tests and support the eventual inclusion of this material in the standard guidelines.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Solo/química , Café , Nitrato de Prata/farmacologia , Poluentes do Solo/análise , Ecotoxicologia
13.
Environ Toxicol Pharmacol ; 106: 104380, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309542

RESUMO

In the environment, organisms are exposed to mixtures of different toxicants, which may interact in ways that are difficult to predict when only considering each component individually. Adapting and expanding tools from pharmacology, the toxicology field uses analytical, graphical, and computational methods to identify and quantify interactions in multi-component mixtures. The two general frameworks are concentration addition, where components have similar modes of action and their effects sum together, or independent action, where components have dissimilar modes of action and do not interact. Other interaction behaviors include synergism and antagonism, where the combined effects are more or less than the additive sum of individual effects. This review covers foundational theory, methods, an in-depth survey of original research from the past 20 years, current trends, and future directions. As humans and ecosystems are exposed to increasingly complex mixtures of environmental contaminants, analyzing mixtures interactions will continue to become a more critical aspect of toxicological research.


Assuntos
Ecossistema , Ecotoxicologia , Humanos , Substâncias Perigosas/toxicidade
14.
Sci Total Environ ; 919: 170745, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340832

RESUMO

Various types of pollutants widely present in environmental media, including synthetic and natural chemicals, physical pollutants such as radioactive substances, ultraviolet rays, and noise, as well as biological organisms, pose a huge threat to public health. Therefore, it is crucial to accurately and effectively explore the human physiological responses and toxicity mechanisms of pollutants to prevent diseases caused by pollutants. The emerging toxicological testing method biomimetic microfluidic chips (BMCs) exhibit great potential in environmental pollutant toxicity assessment due to their superior biomimetic properties. The BMCs are divided into cell-on-chips and organ-on-chips based on the distinctions in bionic simulation levels. Herein, we first summarize the characteristics, emergence and development history, composition and structure, and application fields of BMCs. Then, with a focus on the toxicity mechanisms of pollutants, we review the applications and advances of the BMCs in the toxicity assessment of physical, chemical, and biological pollutants, respectively, highlighting its potential and development prospects in environmental toxicology testing. Finally, the opportunities and challenges for further use of BMCs are discussed.


Assuntos
Poluentes Ambientais , Humanos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Biomimética , Microfluídica , Saúde Pública , Ecotoxicologia
15.
Integr Environ Assess Manag ; 20(3): 645-657, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411383

RESUMO

Many jurisdictions require ecological risk assessments for terrestrial wildlife (i.e., terrestrial vertebrates) to assess potential adverse effects from exposure to anthropogenic chemicals. This occurs, for example, at contaminated sites and when new pesticides are proposed, and it occurs for chemicals that are in production and/or proposed for wide-scale use. However, guidance to evaluate such risks has not changed markedly in decades, despite the availability of new scientific tools to do so. In 2019, the Wildlife Toxicology World Interest Group of the Society of Environmental Toxicology and Chemistry (SETAC) initiated a virtual workshop that included a special session coincident with the annual SETAC North America meeting and which focused on the prospect of improving risk assessments for wildlife and improving their use in implementing chemical regulations. Work groups continued the work and investigated the utility of integrating emerging science and novel methods for improving problem formulation (WG1), exposure (WG2), toxicology (WG3), and risk characterization (WG4). Here we provide a summary of that workshop and the follow-up work, the regulations that drive risk assessment, and the key focus areas identified to advance the ability to predict risks of chemicals to wildlife. Integr Environ Assess Manag 2024;20:645-657. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Animais Selvagens , Praguicidas , Animais , Ecotoxicologia , Medição de Risco/métodos , Praguicidas/toxicidade , América do Norte
16.
Environ Pollut ; 347: 123630, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423273

RESUMO

Pesticides are indispensable in agriculture and have become ubiquitous in aquatic environments. Pesticides in natural environments can cause many negative impacts on aquatic species, ranging from mortality to sub-lethal physiological and behavioural changes. The complex sub-lethal impacts of pesticides are routinely tested on model species, with zebrafish (Danio rerio) being regularly used as a behavioural model. Although behavioural ecotoxicology research using zebrafish is increasing rapidly, we lack quantitative evidence to support which pesticides have been tested and how study designs are carried out. This shortcoming not only limits the deliberate planning for future primary studies to fill the knowledge gaps but also hinders evidence synthesis. To provide quantitative evidence of what pesticides are currently studied and what study designs are used, we combined a systematic evidence map approach and bibliometric analysis. This novel method has been coined research weaving and allows us to elicit gaps and clusters in our evidence base, whilst showing connections between authors and institutions. The methodology can be summarised in five primary steps: literature searching, screening, extraction, data analysis and bibliometric analysis. We identified four areas where research on the sub-lethal effects of pesticide exposure on zebrafish is lacking. First, some widely used pesticides, such as neonicotinoids, are understudied. Second, most studies do not report important elements of the study design, namely the sex and the life-stage of the zebrafish. Third, some behaviours, such as impacts of pesticide exposure on zebrafish cognition, are underexplored. And last, we revealed through the bibliometric analysis that most of the research is conducted in developed countries and there is limited cross country co-authorships. Upon identifying these gaps, we offer solutions for each limitation, emphasizing the importance of diverse global research output and cross-country co-authorships. Our systematic evidence map and bibliometric analysis provide valuable insights for helping to guide future research, which can be used to help support evidence-based policy decisions.


Assuntos
Praguicidas , Animais , Praguicidas/toxicidade , Peixe-Zebra/fisiologia , Agricultura , Ecotoxicologia , Bibliometria
17.
Regul Toxicol Pharmacol ; 148: 105585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403008

RESUMO

In 2022, the European Chemicals Agency issued advice on the selection of high dose levels for developmental and reproductive toxicity (DART) studies indicating that the highest dose tested should aim to induce clear evidence of reproductive toxicity without excessive toxicity and severe suffering in parental animals. In addition, a recent publication advocated that a 10% decrease in body weight gain should be replaced with a 10% decrease in bodyweight as a criterion for dose adequacy. Experts from the European Centre for Ecotoxicology and Toxicology of Chemicals evaluated these recent developments and their potential impact on study outcomes and interpretation and identified that the advice was not aligned with OECD test guidelines or with humane endpoints guidance. Furthermore, data analysis from DART studies indicated that a 10% decrease in maternal body weight during gestation equates to a 25% decrease in body weight gain, which differs from the consensus of experts at a 2010 ILSI/HESI workshop. Dose selection should be based on a biological approach that considers a range of other factors. Excessive dose levels that cause frank toxicity and overwhelm homeostasis should be avoided as they can give rise to effects that are not relevant to human health assessments.


Assuntos
Reprodução , Testes de Toxicidade , Humanos , Animais , Peso Corporal , Aumento de Peso , Ecotoxicologia
18.
Environ Sci Process Impacts ; 26(4): 686-699, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38372577

RESUMO

An environmental toxicological assessment of fourteen furanic compounds serving as valuable building blocks produced from biomass was performed. The molecules selected included well studied compounds serving as control examples to compare the toxicity exerted against a variety of highly novel furans which have been additionally targeted as potential or current alternatives to biofuels, building blocks and polymer monomers. The impact of the furan platform chemicals targeted on widely applied ecotoxicity model organisms was determined employing the marine bioluminescent bacterium Aliivibrio fischeri and the freshwater green microalgae Raphidocelis subcapitata, while their ecotoxicity effects on plants were assessed using dicotyledonous plants Sinapis alba and Lepidium sativum. Regarding the specific endpoints evaluated, the furans tested were slightly toxic or practically nontoxic for A. fischeri following 5 and 15 min of exposure. Moreover, most of the building blocks did not affect the growth of L. sativum and S. alba at 150 mg L-1 for 72 h of exposure. Specifically, 9 and 11 out of the 14 furan platform chemicals tested were non-effective or stimulant for L. sativum and S. alba respectively. Given that furans comprise common inhibitors in biorefinery fermentations, the growth inhibition of the specific building blocks was studied using the industrial workhorse yeast Saccharomyces cerevisiae, demonstrating insignificant inhibition on eukaryotic cell growth following 6, 12 and 16 h of exposure at a concentration of 500 mg L-1. The study provides baseline information to unravel the ecotoxic effects and to confirm the green aspects of a range of versatile biobased platform molecules.


Assuntos
Aliivibrio fischeri , Biomassa , Furanos , Furanos/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/crescimento & desenvolvimento , Ecotoxicologia/métodos , Bioensaio/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Testes de Toxicidade/métodos , Sinapis/efeitos dos fármacos , Microalgas/efeitos dos fármacos
19.
Environ Int ; 184: 108415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309193

RESUMO

An increasing number of harmful environmental factors are causing serious impacts on human health, and there is an urgent need to accurately identify the toxic effects and mechanisms of these harmful environmental factors. However, traditional toxicity test methods (e.g., animal models and cell lines) often fail to provide accurate results. Fortunately, organoids differentiated from stem cells can more accurately, sensitively and specifically reflect the effects of harmful environmental factors on the human body. They are also suitable for specific studies and are frequently used in environmental toxicology nowadays. As a combination of organoids and organ-on-a-chip technology, organoids-on-a-chip has great potential in environmental toxicology. It is more controllable to the physicochemical microenvironment and is not easy to be contaminated. It has higher homogeneity in the size and shape of organoids. In addition, it can achieve vascularization and exchange the nutrients and metabolic wastes in time. Multi-organoids-chip can also simulate the interactions of different organs. These advantages can facilitate better function and maturity of organoids, which can also make up for the shortcomings of common organoids to a certain extent. This review firstly discussed the limitations of traditional toxicology testing platforms, leading to the introduction of new platforms: organoids and organoids-on-a-chip. Next, the applications of different organoids and organoids-on-a-chip in environmental toxicology were summarized and prospected. Since the advantages of the new platforms have not been sufficiently considered in previous literature, we particularly emphasized them. Finally, this review also summarized the opportunities and challenges faced by organoids and organoids-on-a-chip, with the expectation that readers will gain a deeper understanding of their value in the field of environmental toxicology.


Assuntos
Ecotoxicologia , Sistemas Microfisiológicos , Animais , Humanos , Dispositivos Lab-On-A-Chip , Organoides , Testes de Toxicidade
20.
Sci Total Environ ; 921: 171132, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395161

RESUMO

Considerable efforts have been devoted to develop or adapt existing guidelines and protocols, to obtain robust and reproducible results from (eco)toxicological assays on engineered nanomaterials (NMs). However, while many studies investigated adverse effects of NMs on freshwater species, less attention was posed to the marine environment, a major sink for these contaminants. This review discusses the procedures used to assess the ecotoxicity of NMs in the marine environment, focusing on the use of protocols and methods for preparing NMs dispersions and on the NMs physicochemical characterization in exposure media. To this purpose, a critical analysis of the literature since 2010 was carried out, based on the publication of the first NMs dispersion protocols. Among the 89 selected studies, only <5 % followed a standardized dispersion protocol combined with NMs characterization in ecotoxicological media, while more than half used a non-standardized dispersion method but performed NMs characterization. In the remaining studies, only partial or no information on dispersion procedures or on physicochemical characterization was provided. This literature review also highlighted that metal oxides NMs were the most studied (42 %), but with an increasing interest in last years towards nanoplastics (14 %) and multicomponent nanomaterials (MCNMs, 7 %), in line with the growing attention on these emerging contaminants. For all these NMs, primary producers as algae and bacteria were the most studied groups of marine species, in addition to mollusca, while organisms at higher trophic levels were less represented, likely due to challenges in evaluating adverse effects on more complex organisms. Thus, despite the wide use of NMs in different applications, standard dispersion protocols are not often used for ecotoxicity testing with marine species. However, the efforts to characterize NMs in ecotoxicological media recognize the importance of following conditions that are as standardized as possible to support the ecological hazard assessment of NMs.


Assuntos
Nanoestruturas , Nanoestruturas/toxicidade , Nanoestruturas/química , Óxidos/química , Projetos de Pesquisa , Ecotoxicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...